Рекомендации по повышению производительности и возможные риски

Многопоточные приложения предоставляют значительные программные преимущества, включая возможность использования более простых моделей программирования и повышение быстродействия программ. Вместе с тем, существует ряд факторов, которые способны оказывать на производительность заметное отрицательное влияние, с трудом поддающееся прогнозированию, причем характер этого влияния может быть различным на различных компьютерах, даже если на них и выполняются одни и те же версии Windows. Некоторые простые рекомендации, суммирующие сведения, изложенные в настоящей главе, помогут вам минимизировать эти риски. Часть этих рекомендаций, равно как и многие из советов по проектированию, отладке и тестированию программ, которые приводятся в следующей главе, в переработанном виде взята из [6].

• Критически относитесь к аргументации предположительного и теоретического характера, касающейся вопросов производительности, которая часто звучит убедительно, но на практике оказывается ошибочной. Проверяйте предположения на простых прототипах программ, таких как TimedMutualExclusion, или проверяйте их действенность на альтернативных вариантах реализации своего приложения.

• Используйте для тестирования производительности приложений как можно более широкий круг систем из числа тех, которые доступны вам. Полезно запускать программу с использованием самых различных конфигураций памяти, типов процессоров, версий Windows и количества процессоров. Приложение может продемонстрировать очень высокую производительность на одной системе, но крайне низкую на другой; см. обсуждение программы 9.1.

• Блокирование потребляет значительные системные ресурсы; пользуйтесь этим средством лишь при настоятельной необходимости. Предоставляйте возможность удержания (владения) мьютекса или объекта CS строго в пределах лишь необходимого времени. Варьирование параметров задержки или точек засыпания демонстрирует снижение производительности с увеличением длительности периодов блокирования.

• Используйте различные мьютексы для различных ресурсов, чтобы уменьшить степень детализации блокировок настолько, насколько это возможно. В частности, старайтесь не использовать глобальные блокировки.

• Условия высокой состязательности между блокировками затрудняют достижение высокой производительности. Чем выше частота блокирования и разблокирования потоков, тем заметнее снижается производительность. Ухудшение производительности с увеличением количества потоков может быть очень резким, заметно отклоняясь от простой линейной зависимости.

• Объекты CS предоставляют эффективный упрощенный механизм блокирования при небольшом количестве конкурирующих потоков, но в некоторых случаях мьютексы обеспечивают лучшую производительность. При использовании объектов CS в критических по отношению к производительности SMP-приложениях возможно настройка производительности с помощью спин-счетчиков.

• Семафоры могут помочь уменьшить количество конкурирующих активных потоков, не вынуждая вас менять программную модель.

• Переход на SMP-систему может приводить к неожиданному ухудшению производительности в тех случаях, когда производительность, казалось бы, могла только улучшиться. Сохранить приемлемую производительность в подобных ситуациях позволяют методики, уменьшающие состязательность между потоками и использующие маски родства потоков.

• Заметное влияние на производительность оказывает также выбор модели — сигнальной или широковещательной, о чем более подробно говорится в главе 10.

• Используйте доступные стандартные программы протоколирования, позволяющие оценивать время выполнения различных функций и анализировать факторы, влияющие на производительность, что поможет вам лучше представить себе поведение потоков в вашей программе и определить участки кода, выполнение которых занимает наибольшее время.

Резюме

Применение синхронизации может отрицательно воздействовать на производительность как в однопроцессорных, так и в SMP-системах, причем степень такого влияния иногда может становиться весьма существенной. Добиться хорошей производительности в подобных ситуациях можно путем тщательного проектирования программы и правильного выбора типов объектов синхронизации. В этой главе рассмотрен целый ряд полезных методик и даны рекомендации, которые помогут вам поддерживать производительность своих программ на высоком уровне, а также изучен характер возникающих при этом проблем, которые были проиллюстрированы на примере простой тестовой программы, отражающей наиболее существенные характеристики многих реальных ситуаций.

В следующих главах

В главе 10 рассматриваются более общие способы использования объектов синхронизации Windows и обсуждаются некоторые модели программирования, помогающие обеспечивать корректность программ и удобство их сопровождения, а также повышать их производительность. Также в главе 10 создаются несколько сложных объектов синхронизации, которые оказываются полезными при разрешении ряда важных проблем. В последующих главах демонстрируются различные способы использования потоков и объектов синхронизации, находящие применение в таких, например, приложениях, как серверы. Наряду с этим внимание уделено и некоторым фундаментальным аспектам использования потоков. Например, в главе 12 обсуждаются такие темы, как безопасный многопоточный режим и повторное использование библиотек DLL.

Дополнительная литература

Литературные источники, относящиеся также к данной главе, перечислены в главе 10.

Упражнения

9.1. Поэкспериментируйте с программой statsMX, используя для этого собственную систему, а также как можно большее количество других доступных вам систем, отличающихся друг от друга не только аппаратным обеспечением, но и версиями Windows. Аналогичны ли полученные вами результаты тем, о которых сообщалось в настоящей главе? Что наблюдается в случае SMP-систем?

9.2. Используйте функцию TimedMutualExclusionSC для экспериментальной проверки того, что путем изменения значений спин-счетчиков объектов CRITICAL_SECTION действительно можно улучшить производительность SMP-систем в случае большого количества потоков. Результаты могут меняться от системы к системе, однако практические эксперименты показали, что значения счетчиков, лежащие в интервале от 2000 до 10000, являются оптимальными.

9.3. Используя функцию TimedMutualExclusion, которая находится на Web-сайте книги, проведите эксперименты путем варьирования длительности периодов задержки и количества точек засыпания потоков.

9.4. Для ограничения количества выполняющихся потоков в функции TimedMutualExclusion наряду с другими средствами используется дросселирование семафоров. Поэкспериментируйте со значениями счетчиков как на однопроцессорных, так и на SMP-системах. Воспроизводят ли полученные вами результаты те, о которых сообщалось ранее в настоящей главе?

9.5. Воспользуйтесь методикой дросселирования семафоров в программе statsMX (statsCS.c, statsMX.с).

9.6. Упражнение повышенной сложности. Все ли из четырех разновидностей программы работают корректно, если не обращать внимания на производительность, на SMP-системах? Исследуйте результаты, получаемые при большом количестве потоков. Запустите программы на SMP-системах, работающих под управлением Windows 2000 или Windows Server 2003. Проявляются ли при этом проблемы разрыва слов (word tearing) и конфликтов строки кэша (cache line conflict), описанных ранее в настоящей главе, а также в [6]? Для воспроизведения указанных проблем вам может потребоваться использование 16-битовых (тип данных short integer) счетчиков.

9.7. Используйте родство процессора в качестве средства улучшения производительности, внеся необходимые изменения в программы, о которых шла речь в настоящей главе.

9.8. Постарайтесь определить, оказывает ли использование гиперпотоков влияние на производительность приложений. Средства гиперпоточной обработки обеспечиваются, например, процессором Intel Xeon.

ГЛАВА 10

БизнесМеханика. Повышения производительности труда


Похожие статьи.

Понравилась статья? Поделиться с друзьями: