Функциональные возможности интеллектуальных систем

Естественные системы различаются по своей сложности и уровню организации. Понятие об организации системы предполагает определенное согласование состояний и деятельности ее подсистем и составляющих элементов. Это согласование достигается передачей сигналов (сообщений) по внутрисистемным связям, а для поддержания высокого уровня организованности необходимо постоянное общение с окружающим миром. Еще более необходима передача сообщений по внутрисистемным и межсистемным связям для формирования и выдачи командных сигналов при осуществлении актов управления.

Основным свойством естественных ИС является их способность к адаптации при изменении условий функционирования. Способность к адаптации путем самоорганизации основывается как на множественности элементов системы и разветвленности связей между ними, способствующих возникновению целостности, так и на наличии гибкого взаимодействия между элементами по типу обратных связей. Существенным признаком самоорганизации является обособление интеллектуальных систем от окружающей среды.

Функциональной особенностью обособленной ИС является активное взаимодействие ее со средой. Особенности ее структурной организации определяют направление и объем процессов взаимодействия системы со средой. Наличие чрезвычайно разнообразных обратных связей на всех уровнях влияет на интенсивность процессов взаимодействия. Отрицательные обратные связи обеспечивают стабильность функций системы, постоянство ее параметров, устойчивость к внешним воздействиям, Положительные обратные связи играют роль усилителей процессов и имеют особое значение для развития, накопления изменений. Наличие отрицательных и положительных обратных связей приводит к возможности развития по некоторому закону (программе) с использованием внешних ресурсов.

Сложная динамическая (устойчиво неравновесная) организация целенаправленной функционирующей системы требует непрерывного управления, без которого система не может существовать. Особенность этого управления состоит в том, что оно служит причиной ряда процессов в самой системе и прежде всего процессов внутреннего саморегулирования по законам организации системы.

Основными функциями самоорганизующейся системы являются функции информационного обеспечения (ФИО), материального и энергетического обеспечения (ФМЭО), перемещения (ФП) и адаптации (ФА). С точки зрения реализации НИ наибольший интерес представляет ФИО, которая является всеобъемлющей. Информация необходима для контроля внутреннего состояния системы, распознавания ситуаций, решения задачи обеспечения функционирования, выявления закономерностей и обучения. Для последующего использования получаемая информация должна разделяться и откладываться в соответствующие системы памяти (оперативные и долговременные).

Функцию информационного обеспечения реализуют органы контроля окружающей среды, навигации и анализа объектов. Обработка сигналов этих органов информации осуществляется особым управляющим узлом (УУ) (устройством), в котором производится анализ полученных данных, их обработка и обобщение, оценка ситуации и принятие решения. Одновременно ведется обогащение памяти, накопление опыта, обучение и отработка логических методов обработки информации.

1.2 ВИДЫ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ:

  • Расчетно-логическая система

К расчетно-логическим системам относят системы, способные решать управленческие и проектные задачи по декларативным описаниям условий. При этом пользователь имеет возможность контролировать в режиме диалога все стадии вычислительного процесса. Данные системы способны автоматически строить математическую модель задачи и автоматически синтезировать вычислительные алгоритмы по формулировке задачи. Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования

  • Рефлекторная интеллектуальная система

Рефлекторная система — это система, которая формирует вырабатываемые специальными алгоритмами ответные реакции на различные комбинации входных воздействий. Алгоритм обеспечивает выбор наиболее вероятной реакции интеллектуальной системы на множество входных воздействий, при известных вероятностях выбора реакции на каждое входное воздействие, а также на некоторые комбинации входных воздействий. Данная задача подобна той, которую реализуют перцептроны. Перцептро?н, или персептрон (perceptron) — математическая и компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1957 г. Перцептрон стал одной из первых моделейнейросетей. Несмотря на простоту, он способен обучаться и решать довольно сложные задачи. Рефлекторные программные системы применяются к следующим задачам: естественно-языковой доступ к базам данных; оценки инвестиционных предложений; оценки и прогнозирования влияния вредных веществ на здоровье населения; прогнозирования результатов спортивных игр.

  • Интеллектуальная информационная система

Интеллектуальная информационная система (ИИС, intelligent system) — система, основанная на знаниях.

  • Гибридная интеллектуальная система

Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС — это совокупность:

-аналитических моделей

-экспертных систем

-искусственных нейронных сетей

-нечетких систем

-генетических алгоритмов

-имитационных статистических моделей

СТРУКТУРА ИС

Обобщенная структура и компоненты интеллектуальной системы, а также ее окружение:

Функциональные возможности интеллектуальных систем

Инструментальные средства проектирования ИС

Несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:

  • Нисходящий (семиотический) — создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (биологический) — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.

Для разработки ИИС раньше использовались логические языки, а сейчас используются различные процедурные языки. Логико-математическое обеспечение разрабатывается как для самих модулей систем, так и для состыковки этих модулей. Однако в области лингвистики тоже существует множество проблем, например, для обеспечения работы системы в режиме диалога с пользователем на естественном языке необходимо заложить в систему алгоритмы формализации естественного языка, а эта задача оказалась куда более сложной, чем предполагалось на заре развития интеллектуальных систем. Еще одна проблема — постоянная изменчивость языка, которая обязательно должна быть отражена в системах искусственного интеллекта.

На проектирование и создание одной экспертной системы ранее требовалось 20-30 человек-лет. В настоящее время имеется ряд средств, ускоряющих создание. Эти средства называют инструментальными или попросту инструментарием. Использование инструментальных средств разработки экспертных систем сокращает время, затрачиваемое на их создание, в 3-5 раз.

Инструментальное средство разработки экспертных систем – это язык программирования, используемый инженером знаний или программистом для построения экспертной системы. Этот инструмент отличается от обычных языков программирования тем, что обеспечивает удобные способы представления сложных высокоуровневых понятий.

\


Похожие статьи.

Понравилась статья? Поделиться с друзьями: