Список индивидуальных данных

Лабораторная работа №6. Проектирование интеллектуальной системы на основе нечетких знаний.

Цель работы:Разработать компьютерную модель нечеткой экспертной системы и исследовать ее работу.

Теоретическая часть

Для моделирования многомерных зависимостей входы — выход целесообразно использовать иерархические системы нечеткого логического вывода. В этих системах выходная переменная одной базы знаний является входной для другой базы знаний. На рисунке 6.1 приведен пример иерархической нечеткой базы знаний, моделирующей зависимость y=f(x1,x2,x3,x4,x5,x6) с использованием трех баз знаний. Эти базы знаний описывают такие зависимости: y1=f1(x1,x2), y2=f2(x4,x5,x6) и y=f3(y1,x3,y2).

Рисунок 6.1 — Пример иерархической нечеткой базы знаний

Применение иерархических нечетких баз знаний позволяет преодолеть проклятие размерности. При большом количестве входов эксперту трудно описать причинно-следственные связи в виде нечетких правил. Это обусловлено тем, что в оперативной памяти человека может одновременно хранится не более 7±2 понятий-признаков. Следовательно, количество входных переменных в одной базе знаний не должно превышать это магическое число. Более поздние исследования показали, что хорошие базы знаний получаются, когда количество входов не превышает пяти шести. Поэтому, при большем количестве входных переменных необходимо их иерархически классифицировать с учетом приведенных выше рекомендаций. Обычно, выполнение такой классификации не составляет трудностей для эксперта, так как при принятии решений человек иерархически учитывает влияющие факторы.

Преимущество иерархических баз знаний заключается еще и в том, что они позволяют небольшим количество нечетких правил адекватного описать многомерные зависимости входы — выход. Пусть, для лингвистической оценки переменных используется по пять термов. Тогда, максимальное количество правил для задания зависимости y=f(x1,x2,x3,x4,x5,x6) с помощью одной базы знаний будет равным 56=15625 (конечно, для адекватного описания зависимости входы — выход необходимо значительно меньше нечетких правил). Для иерархической базы знаний (рисунок 6.1), описывающую ту же зависимость, максимальное количество нечетких правил будет равным 52+53+53=275 . Причем, это короткие правила с двумя — тремя входными переменными.

Особенностью нечеткого логического вывода по иерархической базе знаний является отсутствие процедур дефаззификации и фаззификаци для промежуточных переменных (y1 и y2 на рисунке 6.1). Результат логического вывода в виде нечеткого множества напрямую передается в машину нечеткого логического вывода следующего уровня иерархии. Поэтому, для описания промежуточных переменных в иерархических нечетких базах знаний достаточно задать только терм-множества, без определения функций принадлежностей.

Общая постановка задачи

Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи согласно варианта, проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

Список индивидуальных данных

1) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи закупок (соотношения цены, качества, объема закупок и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

2) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи распределения нагрузок спортсмена (соотношение нагрузок, физического состояния, потребляемых калорий и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

3) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи управления транспортным средством (регулировка скорости с учетом передачи, погодных условий, интенсивности потока и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

4) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи управления транспортным средством (управление рулем, газом, тормозом при въезде в гараж), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

5) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи регулирования теплоснабжения (соотношение среднесуточной температуры, ветра, размера здания и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

6) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи регулирования реверсного движения на мосту (учитывать время, интенсивность потока, день недели и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

7) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи подбора специй для блюда (соотношение количества и остроты специй, рецептуры, предпочтений едока, объема пищи и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

8) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи подбора объема блюд (учитывать калорийность, вкусовые предпочтения, количество едоков и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

9) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи подачи электроэнергии в условиях экономии (учет времени суток, типа помещений, количества людей, типа оборудования и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

10) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи подбора интенсивности занятий (учитывать начальный уровень подготовки, объем учебного материала, количество человек в группе, необходимый уровень усвоения и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

11) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи расчета потребления бензина (учитывать тип совершаемых маневров, уровень подготовки водителя, состояние автомобиля, тип автомобиля и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

12) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи регулирования системы орошения (учитывать время года, количество выпадающих озадков, вид орошаемой культуры и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

13) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи настройки аудиосистемы (мощность колонок, их количество, размер помещения, назначение установки и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

14) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи выбора дозы снотворного (количество препарата, действие препарата, восприимчивость к выбранному препарату, цель и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

15) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи планирования объема производства продукции (с учетом возможной прибыли, необходимых ресурсов, платежеспособности населения, рынка сбыта и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

16) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи регулирования кондиционера (учитывать его мощность, объем помещения, температуру окружающей среды, необходимую температуру в помещении и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

17) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи распределения нагрузки между компьютерами при использовании их в кластерах (учитывать характеристики компьютеров, их количество, количество параллельного кода, характеристики сети и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

18) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи выбора складского помещения (учитывать площадь склада, количество и размеры продукции, удаленность от места производства и точек реализации, свойства продукции и характеристики помещений и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

19) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи выбора комплектующих для компьютера (учитывать цену, потребности пользователя, совместимость, сроки использования и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

20) Построить нечеткую базу знаний (использовать не менее 3 лингвистических переменных) для задачи определения количества линий в службе поддержки (учитывать количество обслуживаемых клиентов, среднюю частоту обращения в службу одного клиента, среднее время обслуживания одной заявки, квалификацию персонала и т.д.), проверить ее на полноту и произвести нечеткий вывод для конкретных значений (выбрать случайным образом).

Слив персональных данных покупателей AliExpress


Похожие статьи.

Понравилась статья? Поделиться с друзьями: