Сети разного масштаба
Организация сети и ее структура непосредственно зависят от используемых компьютеров и расстояний между ними. Наиболее очевидны различия в организации сетей разных масштабов. Принято различать сети:
1. Глобальные сети (WAN, Wide Area Network) – позволяют организовать взаимодействие между абонентами на больших расстояниях. Эти сети работают на относительно низких скоростях и могут вносить значительные задержки в передачу информации. Протяженность глобальных сетей может составлять тысячи километров. Поэтому они, так или иначе, интегрированы с сетями масштаба страны.
2. Городские сети (MAN, Metropolitan Area Network) – позволяют взаимодействовать на территориальных образованиях меньших размеров на скоростях от средних до высоких. Они меньше замедляют передачу данных, чем глобальные, но не могут обеспечить взаимодействовать на больших расстояниях. Протяженность городских сетей находится в пределах от десятков до сотен километров.
3. Локальные вычислительные сети (ЛВС) – обеспечивают наивысшую скорость обмена информацией между компьютерами. Типичная локальная сеть занимает пространство в одно здание. Протяженность локальных сетей составляет около одного километра. Их основное назначение состоит в объединение пользователей для совместной работы. Такие сети организуются внутри здания, этажа или комнаты.
Для сетей разных масштабов свойственны разные способы организации. Причин тому несколько, среди них на первом месте стоит качество линии передачи данных, обусловленное ограниченностью скорости передачи сигнала, отношением сигнал/шум и т.д. В результате с увеличением масштаба сети диапазон используемых скоростей передачи смещается вниз. Кроме того, в случае, например, локальных сетей, запас скорости передачи данных позволяет использовать такие варианты организации и режимов работы сети, которые вряд ли могли бы применяться в глобальных сетях. Так, из двух основных режимов передачи данных – вещательного и точка-точка, первый широко используется в локальных сетях, а второй – в глобальных.
Среды передачи данных
Передача данных может происходить по кабелю (в этом случае говорят об ограниченной или кабельной среде передачи) и с помощью электромагнитных волн той или иной природы – инфракрасных, микроволн, радиоволн, – распространяющихся в пространстве (неограниченная среда передачи, беспроводные сети).
В большинстве случаев кабельные среды удобнее, надежнее и выгоднее неограниченных. Как правило, кабель и сопутствующее сетевое оборудование стоит гораздо дешевле оборудования для беспроводных сетей, а скорость передачи данных по кабелю выше. Тем не менее, в некоторых случаях прокладка кабеля либо технически затруднена (например, водные преграды), либо экономически неоправданна (стоимость прокладки кабеля высока, а большая скорость передачи не требуется), либо сталкивается с организационными или иными проблемами (например, необходимо проложить траншею через оживленную магистраль в центре города, на что очень сложно получить согласие городских властей). Кроме того, может появиться необходимость подключения к сети пользователей, по роду деятельности часто меняющих местонахождение (например, кладовщики на большом складе). Во всех подобных (и многих других) случаях могут использоваться беспроводные сети.
Кабельные среды по используемому материалу делятся на “медные” (в самом деле, проводящие жилы таких кабелей могут содержать не только медь, но и другие металлы и их сплавы) и оптические (оптоволоконные, проводящая жила изготавливается из оптически прозрачных материалов – кварца или полимеров). Медные кабели бывают симметричными (все проводники одинаковы, например, витая пара проводников) и асимметричными (например, коаксиальный кабель, состоящий из изолированных друг от друга центральной жилы и оплетки). Оптические кабели различаются по соотношению между толщиной проводящей жилы и несущей частотой передачи данных. Тонкие жилы, диаметр сечения которой сравним с длиной волны несущей частоты, образуют одномодовые кабели (типичная толщина 8-10 мкм), а более толстые – многомодовые (до 50-60 мкм).
При построении беспроводных сетей, как правило, применяется одна из трех технологий: передача в инфракрасном диапазоне, передача данных с помощью узкополосных радиосигналов и передача данных с помощью радиосигналов с распределенным спектром.
Режимы передачи данных
Сети делятся на два класса, различающиеся способом использования канала передачи данных: сети с селекцией данных и маршрутизацией данных.
В сетях с селекцией данных существует общий канал передачи, к которому подключены все узлы. В каждый момент времени каналом владеет только один узел, который выдает данные в канал. Любой выданный в канал блок данных получают (в виде копий) все узлы сети. Каждый узел проверяет адрес получателя, переданный с блоком данных, и, сравнив его с собственным адресом, в случае совпадения обрабатывает полученные данные, а в случае несовпадения – отбрасывает их (уничтожает свою копию).
Сети с маршрутизацией данных состоят из множества отдельных каналов, соединяющих пары узлов сети. Пара узлов, обладающая общим каналом, может передавать данных друг другу независимо от остальных узлов сети. Для передачи данных между узлами, не имеющими общего канала, необходимо задействовать одного или несколько других узлов, которые осуществили бы маршрутизацию передаваемой информации.
Способы коммутации
Коммутация является необходимым элементом связи узлов между собой, позволяющим сократить количество необходимых линий связи и повысить загрузку каналов связи. Практически невозможно предоставить каждой паре узлов выделенную линию связи, поэтому в сетях всегда применяется тот или иной способ коммутации абонентов, использующий существующие линии связи для передачи данных разных узлов.
Коммутируемой сетью называется сеть, в которой связь между узлами устанавливается только по запросу.
Абоненты соединяются с коммутаторами выделенными (индивидуальными) линиями связи. Линии связи, соединяющие коммутаторы, используются абонентами совместно.
Коммутация может осуществляться в двух режимах: динамически и статически. В первом случае коммутация выполняется на время сеанса связи (обычно от секунд до часов) по инициативе одного из узлов, а по окончании сеанса связь разрывается. Во втором случае коммутация выполняется обслуживающим персоналом сети на значительно более длительный период времени (несколько месяцев или лет) и не может быть изменена по инициативе пользователей. Такие каналы называются выделенными (dedicated) или арендуемыми (leased).
Две группы способов коммутации: коммутация каналов (circuit switching) и коммутация с промежуточным хранением (store-and-forward). Вторая группа состоит из двух способов: коммутации сообщений (message switching) и коммутации пакетов (packet switching).
При коммутации каналов между узлами, которым необходимо установить связь друг с другом, обеспечивается организация непрерывного составного канала, состоящего из последовательно соединенных отдельных каналов между узлами. Отдельные каналы соединяются между собой коммутирующим оборудованием (коммутаторами). Перед передачей данных необходимо выполнить процедуру установления соединения, в процессе которой создается составной канал.
Под коммутацией сообщений понимается передача единого блока данных между узлами сети с временной буферизацией этого блока каждым из транзитных узлов. Сообщением может быть текстовый файл, файл с графическим изображением, электронное письмо – сообщение имеет произвольный размер, определяемый исключительно его содержанием, а не теми или иными технологическими соображениями.
При коммутации пакетов все передаваемые пользователем данные разбиваются передающим узлом на небольшие (до нескольких килобайт) части – пакеты (packet). Каждый пакет снабжается заголовком, в котором указывается, как минимум, адрес узла-получателя и номер пакета. Передача пакетов по сети происходит независимо друг от друга. Коммутаторы такой сети имеют внутреннюю буферную память для временного хранения пакетов, что позволяет сглаживать пульсации трафика на линиях связи между коммутаторами. Пакеты иногда называют дейтаграммами (datagram), а режим индивидуальной коммутации пакетов – дейтаграммным режимом.
Сеть с коммутацией пакетов замедляет процесс взаимодействия каждой конкретной пары узлов, поскольку их пакеты могут ожидать в коммутаторах, пока передадутся другие пакеты. Однако общая эффективность (объем передаваемых данных в единицу времени) при коммутации пакетов будет выше, чем при коммутации каналов. Это связано с тем, что трафик каждого отдельного абонента носит пульсирующий характер, а пульсации разных абонентов, в соответствии с законом больших чисел, распределяются во времени, увеличивая равномерность нагрузки на сеть.
Виртуальные каналы
В отличие от дейтаграммного режима передачи, предполагающего независимую маршрутизацию каждого пакета, режим виртуального канала (virtual circuit или virtual channel) устанавливает единый маршрут для всех пакетов в рамках одного соединения. Перед тем, как начать передачу, передающий узел выдает в сеть специальный пакет – запрос на установление соединения. Этот пакет, проходя через коммутаторы, “прокладывает” виртуальный канал – коммутаторы запоминают маршрут для данного соединения, и последующие пакеты будут отправлены по нему же. При этом время, затраченное на установление виртуального канала, компенсируется более быстрой передачей потока пакетов за счет того, что коммутаторы не выполняют полную маршрутизацию каждого пакета, а быстро определяют его маршрут по номеру виртуального канала.