Графический метод решения для злп с двумя переменными.

Найдем решение задачи, состоящей в определении максимального значения функции

(1.2)

при условиях

(1.3)

Графический метод решения для злп с двумя переменными. (1.4)

Каждое из неравенств (1.3), (1.4) системы ограничений задачи геометрически определяет полуплоскость соответственно с граничными прямыми и . В том случае, если система неравенств (1.3), (1.4) совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей – выпуклое, то областью допустимых решений задачи является выпуклое множество, которое называется многоугольником решений. Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим линию уровня (где h – некоторая постоянная), проходящую через многоугольник решений, и будем передвигать ее в направлении вектора до тех пор, пока она не пройдет через ее последнюю общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

Заканчивая рассмотрение геометрической интерпретации ЗЛП, отметим, что при нахождении ее решения могут встретиться случаи, изображенные на рис. 1 — 4. Рис. 1 характеризует такой случай, когда целевая функция принимает максимальное значение в единственной точке А. Из рис. 2 видно, что максимальное значение целевая функция принимает в любой точке отрезка АВ. На рис. 3 изображен случай, когда целевая функция не ограничена сверху на множестве допустимых решений, а на рис. 4 – случай, когда система ограничений задачи несовместна.

Графический метод решения для злп с двумя переменными.

Графический метод решения для злп с двумя переменными.

Отметим, что нахождение минимального значения линейной функции при данной системе ограничений отличается от нахождения ее максимального значения при тех же ограничениях лишь тем, что линия уровня передвигается не в направлении вектора а в противоположном направлении. Таким образом, отмеченные выше случаи, встречающиеся при нахождении максимального значения целевой функции, имеют место и при определении ее минимального значения.

Итак, нахождение решения задачи линейного программирования на основе ее геометрической интерпретации включает следующие этапы:

1. Строят прямые, уравнения которых получаются в результате замены в ограничениях (1.3) и (1.4) знаков неравенств на знаки точных равенств.

2. Находят полуплоскости, определяемые каждым из ограничений задачи.

3. Находят многоугольник решений.

4. Строят вектор .

5. Строят прямую , проходящую через многоугольник решений.

6. Передвигают прямую в направлении вектора , в результате чего-либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве планов.

7. Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.

Подробное описание метода решения, а также примеры можно найти в [1, 2].

Решение задачи линейного программирования графическим методом


Похожие статьи.

Понравилась статья? Поделиться с друзьями: